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FWn@ and axhymmetric contact problems for a rough layer are studied in a non- 
linear formulatfon. In the particular case of a very thick layer, the principal 
term of the kernel under cousideratlon in the nonllnear integral eatton agrees 
with the kernel examined in El, 21. The solution of the problems reduces to 
lnvestigatlng nonlinear integral equations of Hammerstein type, for which we 
use succesalve approximation. Numerical results are presented which show the 
change fn the nature of the pressure distribution under the stamp when roughness 
of the foundation is taken into account. 

Contact problems of the theory of elaeticity for rough bodies were cousidered in a 
linear formulation in [3 -53. Shtaerman flnrt obtained the equation of the plane con- 
tact problem for an elastic rough body on the basis of an assumption about the proport- 
ionality of the additional local displacements because of the spreading of the roughness 
In the contact zone by the normal presurre. However, as results of a number of exper- 
imental studies show [S, 71, the closure of the rough bodies making contact is proport- 
ional to the pressure to the power a (a < 1) because of the deformation of the micro- 
projections. In such a formulation some plane contact problems were examined in Cl., 
2,8]. An approximate solution of the axlsymmetric problem is presented in C91. 

1. Let us consider the plane contact problem for an elastic rough stripl x i < 30, 
0 < y < h. A rigid stamp, the shape of whose surface is given by the equation 

y = g (z), (g (0) = O),ls impressed on the upper boundary of the strip by a force P. 
Outside the contact section (--a, a), the upper boundary of the strip is not loaded. 
Two cases of strip support are investigated in parallel: 

1) The strip lies on a rigid foundation without friction; in this case the boundary 
conditions have the form (6 is the sefflement of the stamp) 

‘trv (x, 0) = 0, v (2, 0) = 0, I x I < - 
(1. 1) 

FCy (3, h) = 0, q&G 4 = 0, a < 1 5 1 < CQ 

%I (x9 h) = 0, v (2, h) = g (4 + 6, I a! I < a 

2) I& strip is ffwed rigidly along the foundation: then the conditions on the line 
of dlscontinulty y = 0 change, taking the form 

u (z, 0) = 0, v (x, 0) = 0 

Let us c&der the normal displacements u (x, F-) of the boundary of the elastic 
$trip to be comp&& of the df@acement Ul due to the strain of the micRIpr@ections 
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defined as follows: 

Vl = A [p (z)P, A > 0 (1.2) 

Here p (z) is the contact pressure distribution function, A is a coefficient charac- 

terizing the deformation properties of the rough layer. and cc is an exponent found on 

the basis of a reference surface curve (a 6 1). Moreover, elastic displacements 
us of the strip occur, which are deterpined on the basis of the boundary corrlitions 

according to [lo] 2(1-v7 
us = nE 5 k(q) PWE (1.3) 

The function k (t) has the form -k(t) = [+osetd. (1.4) 

The specific form of the function L (u) de”~nds on the boundary conditions. 

For problem 1 Q) = d12u-- 
sh2u+2u 

For problem 2 L (n) S -2% ,.,2~Us~~U~$ + ,f 9 X = 3 - 4V 

(1.5) 

( 1. 6) 

Let us write the condition for contact between the stamp and the strip and the equi- 

librium condition in dimensionless coordinates. To do this, we introduce the notation 

(1.7) 

gl (Xl) = &g Ia (2x,- I)], A1 - -& [ ,-=$I- 

p1 (x1) = 2 fiG @) P [a @x1- Ql, Pl - .s P 

We then obtain 
1 

s k IA V - 41 PI (t) dt + Al IPI (41a = gl(xd + q (1.8) 
0 

(1.9) 

Therefore, the solution of the problem formulated reduces to solving the nonlinear 
integral’equation (1.8) under the condition (1.91, whereupon the pressure under the 

stamp and the settlement of the stamp are determined. 

Equation (1.8) is an equation of Hammerstein type. Let us reduce it to canonical 

form. To do this we introduce the new function 

9 (%I = A, [PI (d” - g, (%I - q (1.10) 

Then 

A-‘la s k LA 0 - 41 N(t) + g, (f) -/- q]“W + I) (Xl) = u 1 (1.11) 
0 

PI = A;1’a 5 NJ (XI) + g, (xl) + q]l’a dxl 
0 
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Successive a~r~rna~o~ can be u$td to solve the equation (1. XL) of ~amme~tein 
type. For instance. settfng tbO (x1) nrz 0 and successively 

Let us prove compliance with the sufficient conditions for convergence of this 
method for ( 1. II). 

1) Tht kernel k (t) of the integral equation (1.13) can be represented in the 
foilowing form by taking (1.4) - (1.6) into account 

k (t) = --In I t I + F (th 0 < 1 t 1 c 0~ 

where F (t) is a cantinuous function. The kernel k (t) evidently b&ngs to the 
class L,. 

2) The iimctlon f (t, u) = A-‘;PL Iu + g, (t) + qPa uniformly sattsfies a 
Lipschitz condition of the form 

If (6 4 - f (6 4 I < c itI I %- uz [ f 1.12) 

in the range of variation of the function 2.5 = * (xX). In fact, since the normal pre- 
ssure p1 (3J is non-negative, then 

-_g1 64 -r-Gf<O 

follows from (1.10) and tht properties of the kernel in (1.11). 
The darivative 8f (t, u) i 6% = a”lA,-lfa [a j- gr (t) -I- qjlfa-l is bounded 

by the value a+A,-r/o [gl (t) + #let-l (0 (a < 4) in Zfie rmg*afvariation 
of the argument u . Hence, the Lipschitz condiKon (1.12) is satisfW in which 

c (t) = $ A;‘@’ [n (t) + W’a-x 

3) The function f (t, 0) = Al-W fgt (t) + +'a, evidently belongs to the 
class Ls. 

Upon compliance with conditions 1) - 3) the method of successive approximations 
~omwgea [II] if only the parameters of the problem satisfy the inosUalitr 

(1.13) 

Upon cmplbn~ewith COnditiOn (1.X3), the ~~8Of~n~ti~ (qa (Zl)) ha 

a limit which will indeed be the unique solution of (1.11). 
tit us prove that this solution is unique. Let us assume the oposite, i. e., that 

two solutions of& u) exm 91(q) and & (21). Then a nontrivial soWzion of the 
equation 

1 

Y@l) + qa 
s 

( 1.14) 
k: [h(f -qzl)]cp It, Y(t)]dt so 

W (11) - $1 (%I " 4% (%)r 9 I4 Y (t) 1 = [q!%(t) + Y(t) + g1 (t) + rp - 
1% (0 + g1 (t) + sl’ ’ 9 
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should exist. 
Let us multiply (1.14) by the function cp [q, ‘P (zr)] and let us integrate over the 

segment (0, I). We obtain 

11 

A-l!a 
1 ss Ii [h (t - 

0 0 

(1.15) 

1 

The function cp [zIr Y (q)] is positive for Y (zr) >O and negative for y (~1) 

< 0. Therefore, 
1 

s 
'I+' (51) v 1~ Y (zdl dz, > 0, y” (4 + 0 

0 

The kernel h-[i(t--s)] is non-negative, i. e., the inequality 

J(+- jjkIitt - z)] w (t) o(z) dt dz > 0 
0 0 

holds for any continuous function o (z) not identically zero in the range (O,l) * 
Indeed, the functional J(o) can be represented in the form 

J(o)=jo@) {~k[?+-i)lw(l)dl}dx 

0 0 

The expression in the braces is, as follows from (1.3), the displacement to the 
accuracy of a positive constant, which the boundary of the strip will undergo on the 

contact area under the effect of the distributed load o (3). Therefore, the function- 

al J (0) is, to the accuracy of a positive factor, the total work produced by the arb- 

itrary pressures 0 (z) on the appropriate displacements of points of the contact area, 
which is always non-negative. By virtue of the non-negativity of the kernel, the left 
side of (1.15) is non-negative. Therefore, (1.5) is valid if and only if Y (q) f 0. 

By knowing the solution of (1.11) as the limit of the sequence of functions$,, (x), 
the pressure in dimensionless coordinates can be found by means of (1.10). The sett- 

lement q of the stamp is found from (1.9). 

Let us note that the pressure cannot be infinite at the ends of the contact area, 
Indeed, by assuming that the pressure has an integrable power singularity of the form 

q-8 (0 < 6 < 1) at the point xl = , 0, and taking into account that the kernel 

of the integral equation (1.8) has a singularity of the form In x1, we obtain that the 

left side in (1.8) has a singularity of the order of qGe, while there is no singularity 
in the right side, which proves the assertion mentioned above. 

In the case of a smooth stamp making contact with a rough elastic layer an addit- 
ional condition p (-a) = p (a) = 0 expressing the continuity of the function for 
the pressure on the boundary of the elastic layer, exists to determine the unknown 
boundaries of the contact area (--a, a) . 

2. Different plane contact problems for a rargh layer can be solved by the method 
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ehtcida@d in 3cct.l by de~g the nature of the pna~rt d~t~bu~o~ on the bound- 
ar)r of the rough I&yer as a function of the Iayer thicknerrr, the roUghn+sr p;ar&meteff, 
the eI&&ic char&ztcriS&s of the layer, etc. 

As an illustration of a cankt probl~, let ut consider the frictianlecsl impression 
of a rigid stamp with a flat base g (I) == 0 in a thick rough layer. In this case, we 
have the Integral equation (X.8) and the condition (I,@ in which gl (zx) = 0 to de- 
termine the p-n and the kernel is rcpresentabfe in the form 

k (t) = -in I t I f a, 

where a@ = -4.352 for the first boundaq vahte problem, and a0 L= -0.627 for 
th second bouadary value problem. Such an asymptotic rqsesentation of the kern& 
(1.4) ti vaUd fosr rarfiiciently thick strip when ha = f2u I kfa = o (1) [ 10~ 

By solving (I. 8) by slcceaafve ap~~rna~~ under theat conditions, we obtain 
for the pressore on the contact area 

Plh) = qia 19t~~)+q11’a 
where 9 (Q) is the limit of the sequ~ce of fimctia {qn (q)) and 
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3, Let us examine the axisvmmetric problem of impressing a circular stamp in a 
rough elastic half-space (9 < 0). The shape of the stamp surface making contact 
is given by the equation y = g’ (p) (g (a) = 0). A force P presses the stamp in- 
to the half-space. The contact area is in the shape of a circle of radius a. The 
normal displacements of the elastic half-space boundary in the contact region, defin- 
ed by the shape of the stamp and its settlement 6, are comprised of elastic displace- 
ments at points of the half-space boundary us, which are determined according to 
[lo] on the basis of the boundary conditions 

a 2.1; 

i - v2 
us = - ss p (r) rd rdg, 

SCE 
0 0 T/rg-!-P2 - 2rp co3 cp 

(p (r) is the ~~buti~ function of the contact pressures), and the displacements 
ui due to deformation of the micropmjections, which are determined by (1.2). 

Let us write the condition for contact between the stamd and the half-space bamd- 
ary and the equilibrium condition in dimensionless coordinates in canonical form. To 
do this we introduce the notation 

We then obtain 

PI = 2n i pt (4 rl drl 
0 

As in Sect. 1, we will solve the equation of Hammerstein type (the first equation 
in (3.1)) by successive appr~~ti~s, The kernel k (rlt pi) of the integral eouat- 
ion (3.1) evidently belongs to the class L,. . It can also be confirmed that the fun- 
ction 

f (r, u) = di1’a r [u + gl (F) -I- rlllfa, u < 0 
uniformly satisfies the Lipschitz condition 

I f fc 4 - f (6 d I< c 0-j 

c(r) = czd;l'ar igl (I") + qp-1 

I % - UP I 

q]“U belongs to the class Ls. and that the function f (r, 0) = Al-'@ r [gl (r) $ 
Hence, upon compliance with the inequality 
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11 

a-2A;“/a ss P2 Is1 (PI + N2’(J-*k2 (r, P) fir dP < 1 
00 

the sequence of functions (qn (pi)} wi ‘11 converge almost everywhere to the solution 
of (3.1) [ll]. The proof of the uniquerresa of the solution is carried out analogously to 
the 

i 

4 

proof executed in Sect. 1. 

0.6 

0.2 
b 2 0.6 q f 

o~~~~ 
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Fig. 1 Fig. 2 

As an illustration, let us consider the numerical solution of a problem on impress- 
ing a circular cylindrical stamp with a flat base g (p) = 0 into a rough elastic half- 
space. The following numerical valuea were taken for the dimensionl~ parameters: 
a = 0.4,Al = 0.9,q = 0.1. TO 40-s accuracy in the solution it turns out to be 
sui%ient to evaluate 12 approximations of the function Ip (z). The graph obtained for 
the function Pi (rr) representing the dimensionless pmre is presented in Fig. 2. 
The graph of the pnrrure distribution under the stamp is given by the dashed line when 
roughness of the base is not taken into account. In both casea a load of P = 0.3625. 
10-a acts on the stamp. 
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